\(\int \frac {x^6}{(d+e x) (d^2-e^2 x^2)^{5/2}} \, dx\) [137]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 148 \[ \int \frac {x^6}{(d+e x) \left (d^2-e^2 x^2\right )^{5/2}} \, dx=\frac {x^5 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^3 (5 d-6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x (5 d-8 e x)}{5 e^6 \sqrt {d^2-e^2 x^2}}-\frac {16 \sqrt {d^2-e^2 x^2}}{5 e^7}-\frac {d \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e^7} \]

[Out]

1/5*x^5*(-e*x+d)/e^2/(-e^2*x^2+d^2)^(5/2)-1/15*x^3*(-6*e*x+5*d)/e^4/(-e^2*x^2+d^2)^(3/2)-d*arctan(e*x/(-e^2*x^
2+d^2)^(1/2))/e^7+1/5*x*(-8*e*x+5*d)/e^6/(-e^2*x^2+d^2)^(1/2)-16/5*(-e^2*x^2+d^2)^(1/2)/e^7

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {864, 833, 655, 223, 209} \[ \int \frac {x^6}{(d+e x) \left (d^2-e^2 x^2\right )^{5/2}} \, dx=-\frac {d \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e^7}+\frac {x^5 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {16 \sqrt {d^2-e^2 x^2}}{5 e^7}+\frac {x (5 d-8 e x)}{5 e^6 \sqrt {d^2-e^2 x^2}}-\frac {x^3 (5 d-6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}} \]

[In]

Int[x^6/((d + e*x)*(d^2 - e^2*x^2)^(5/2)),x]

[Out]

(x^5*(d - e*x))/(5*e^2*(d^2 - e^2*x^2)^(5/2)) - (x^3*(5*d - 6*e*x))/(15*e^4*(d^2 - e^2*x^2)^(3/2)) + (x*(5*d -
 8*e*x))/(5*e^6*Sqrt[d^2 - e^2*x^2]) - (16*Sqrt[d^2 - e^2*x^2])/(5*e^7) - (d*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]]
)/e^7

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 655

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[e*((a + c*x^2)^(p + 1)/(2*c*(p + 1))),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 833

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 - 1)*(a + c*x^2)^(p + 1)*((a*(e*f + d*g) - (c*d*f - a*e*g)*x)/(2*a*c*(p + 1))), x] - Dist[1/(2*a*c*(p + 1)),
Int[(d + e*x)^(m - 2)*(a + c*x^2)^(p + 1)*Simp[a*e*(e*f*(m - 1) + d*g*m) - c*d^2*f*(2*p + 3) + e*(a*e*g*m - c*
d*f*(m + 2*p + 2))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && GtQ
[m, 1] && (EqQ[d, 0] || (EqQ[m, 2] && EqQ[p, -3] && RationalQ[a, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rule 864

Int[((x_)^(n_.)*((a_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(x/e))*(a + c*x
^2)^(p - 1), x] /; FreeQ[{a, c, d, e, n, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||
  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2]))

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^6 (d-e x)}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx \\ & = \frac {x^5 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\int \frac {x^4 \left (5 d^3-6 d^2 e x\right )}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d^2 e^2} \\ & = \frac {x^5 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^3 (5 d-6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {\int \frac {x^2 \left (15 d^5-24 d^4 e x\right )}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{15 d^4 e^4} \\ & = \frac {x^5 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^3 (5 d-6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x (5 d-8 e x)}{5 e^6 \sqrt {d^2-e^2 x^2}}-\frac {\int \frac {15 d^7-48 d^6 e x}{\sqrt {d^2-e^2 x^2}} \, dx}{15 d^6 e^6} \\ & = \frac {x^5 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^3 (5 d-6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x (5 d-8 e x)}{5 e^6 \sqrt {d^2-e^2 x^2}}-\frac {16 \sqrt {d^2-e^2 x^2}}{5 e^7}-\frac {d \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx}{e^6} \\ & = \frac {x^5 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^3 (5 d-6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x (5 d-8 e x)}{5 e^6 \sqrt {d^2-e^2 x^2}}-\frac {16 \sqrt {d^2-e^2 x^2}}{5 e^7}-\frac {d \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )}{e^6} \\ & = \frac {x^5 (d-e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {x^3 (5 d-6 e x)}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x (5 d-8 e x)}{5 e^6 \sqrt {d^2-e^2 x^2}}-\frac {16 \sqrt {d^2-e^2 x^2}}{5 e^7}-\frac {d \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{e^7} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.47 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.88 \[ \int \frac {x^6}{(d+e x) \left (d^2-e^2 x^2\right )^{5/2}} \, dx=\frac {\sqrt {d^2-e^2 x^2} \left (-48 d^5-33 d^4 e x+87 d^3 e^2 x^2+52 d^2 e^3 x^3-38 d e^4 x^4-15 e^5 x^5\right )}{15 e^7 (-d+e x)^2 (d+e x)^3}+\frac {2 d \arctan \left (\frac {e x}{\sqrt {d^2}-\sqrt {d^2-e^2 x^2}}\right )}{e^7} \]

[In]

Integrate[x^6/((d + e*x)*(d^2 - e^2*x^2)^(5/2)),x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(-48*d^5 - 33*d^4*e*x + 87*d^3*e^2*x^2 + 52*d^2*e^3*x^3 - 38*d*e^4*x^4 - 15*e^5*x^5))/(15
*e^7*(-d + e*x)^2*(d + e*x)^3) + (2*d*ArcTan[(e*x)/(Sqrt[d^2] - Sqrt[d^2 - e^2*x^2])])/e^7

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(280\) vs. \(2(130)=260\).

Time = 0.43 (sec) , antiderivative size = 281, normalized size of antiderivative = 1.90

method result size
risch \(-\frac {\sqrt {-e^{2} x^{2}+d^{2}}}{e^{7}}-\frac {d \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{6} \sqrt {e^{2}}}+\frac {23 d^{2} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{60 e^{9} \left (x +\frac {d}{e}\right )^{2}}-\frac {493 d \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{240 e^{8} \left (x +\frac {d}{e}\right )}+\frac {d^{2} \sqrt {-\left (x -\frac {d}{e}\right )^{2} e^{2}-2 d e \left (x -\frac {d}{e}\right )}}{24 e^{9} \left (x -\frac {d}{e}\right )^{2}}+\frac {25 d \sqrt {-\left (x -\frac {d}{e}\right )^{2} e^{2}-2 d e \left (x -\frac {d}{e}\right )}}{48 e^{8} \left (x -\frac {d}{e}\right )}-\frac {d^{3} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{20 e^{10} \left (x +\frac {d}{e}\right )^{3}}\) \(281\)
default \(\frac {-\frac {x^{4}}{e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}+\frac {4 d^{2} \left (\frac {x^{2}}{e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {2 d^{2}}{3 e^{4} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}\right )}{e^{2}}}{e}+\frac {d^{2} \left (\frac {x^{2}}{e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {2 d^{2}}{3 e^{4} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}\right )}{e^{3}}+\frac {d^{4}}{3 e^{7} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {d^{5} \left (\frac {x}{3 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}+\frac {2 x}{3 d^{4} \sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{6}}-\frac {d \left (\frac {x^{3}}{3 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {\frac {x}{e^{2} \sqrt {-e^{2} x^{2}+d^{2}}}-\frac {\arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{2} \sqrt {e^{2}}}}{e^{2}}\right )}{e^{2}}-\frac {d^{3} \left (\frac {x}{2 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {d^{2} \left (\frac {x}{3 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}+\frac {2 x}{3 d^{4} \sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 e^{2}}\right )}{e^{4}}+\frac {d^{6} \left (-\frac {1}{5 d e \left (x +\frac {d}{e}\right ) \left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}+\frac {4 e \left (-\frac {-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e}{6 d^{2} e^{2} \left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}-\frac {-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e}{3 e^{2} d^{4} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{5 d}\right )}{e^{7}}\) \(533\)

[In]

int(x^6/(e*x+d)/(-e^2*x^2+d^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-(-e^2*x^2+d^2)^(1/2)/e^7-d/e^6/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2))+23/60*d^2/e^9/(x+d/e)^2
*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)-493/240*d/e^8/(x+d/e)*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)+1/24*d^2/e^9/
(x-d/e)^2*(-(x-d/e)^2*e^2-2*d*e*(x-d/e))^(1/2)+25/48*d/e^8/(x-d/e)*(-(x-d/e)^2*e^2-2*d*e*(x-d/e))^(1/2)-1/20*d
^3/e^10/(x+d/e)^3*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 258, normalized size of antiderivative = 1.74 \[ \int \frac {x^6}{(d+e x) \left (d^2-e^2 x^2\right )^{5/2}} \, dx=-\frac {48 \, d e^{5} x^{5} + 48 \, d^{2} e^{4} x^{4} - 96 \, d^{3} e^{3} x^{3} - 96 \, d^{4} e^{2} x^{2} + 48 \, d^{5} e x + 48 \, d^{6} - 30 \, {\left (d e^{5} x^{5} + d^{2} e^{4} x^{4} - 2 \, d^{3} e^{3} x^{3} - 2 \, d^{4} e^{2} x^{2} + d^{5} e x + d^{6}\right )} \arctan \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{e x}\right ) + {\left (15 \, e^{5} x^{5} + 38 \, d e^{4} x^{4} - 52 \, d^{2} e^{3} x^{3} - 87 \, d^{3} e^{2} x^{2} + 33 \, d^{4} e x + 48 \, d^{5}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{15 \, {\left (e^{12} x^{5} + d e^{11} x^{4} - 2 \, d^{2} e^{10} x^{3} - 2 \, d^{3} e^{9} x^{2} + d^{4} e^{8} x + d^{5} e^{7}\right )}} \]

[In]

integrate(x^6/(e*x+d)/(-e^2*x^2+d^2)^(5/2),x, algorithm="fricas")

[Out]

-1/15*(48*d*e^5*x^5 + 48*d^2*e^4*x^4 - 96*d^3*e^3*x^3 - 96*d^4*e^2*x^2 + 48*d^5*e*x + 48*d^6 - 30*(d*e^5*x^5 +
 d^2*e^4*x^4 - 2*d^3*e^3*x^3 - 2*d^4*e^2*x^2 + d^5*e*x + d^6)*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) + (15*
e^5*x^5 + 38*d*e^4*x^4 - 52*d^2*e^3*x^3 - 87*d^3*e^2*x^2 + 33*d^4*e*x + 48*d^5)*sqrt(-e^2*x^2 + d^2))/(e^12*x^
5 + d*e^11*x^4 - 2*d^2*e^10*x^3 - 2*d^3*e^9*x^2 + d^4*e^8*x + d^5*e^7)

Sympy [F]

\[ \int \frac {x^6}{(d+e x) \left (d^2-e^2 x^2\right )^{5/2}} \, dx=\int \frac {x^{6}}{\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {5}{2}} \left (d + e x\right )}\, dx \]

[In]

integrate(x**6/(e*x+d)/(-e**2*x**2+d**2)**(5/2),x)

[Out]

Integral(x**6/((-(-d + e*x)*(d + e*x))**(5/2)*(d + e*x)), x)

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.75 \[ \int \frac {x^6}{(d+e x) \left (d^2-e^2 x^2\right )^{5/2}} \, dx=-\frac {d^{5}}{5 \, {\left ({\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{8} x + {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} d e^{7}\right )}} - \frac {x^{4}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{3}} - \frac {5 \, d x^{3}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{4}} + \frac {20 \, d^{2} x^{2}}{3 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{5}} + \frac {64 \, d^{3} x}{15 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{6}} + \frac {x^{2}}{3 \, \sqrt {-e^{2} x^{2} + d^{2}} e^{5}} - \frac {14 \, d^{4}}{3 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{7}} - \frac {52 \, d x}{15 \, \sqrt {-e^{2} x^{2} + d^{2}} e^{6}} - \frac {d \arcsin \left (\frac {e x}{d}\right )}{e^{7}} + \frac {4 \, d^{2}}{3 \, \sqrt {-e^{2} x^{2} + d^{2}} e^{7}} + \frac {\sqrt {-e^{2} x^{2} + d^{2}}}{3 \, e^{7}} \]

[In]

integrate(x^6/(e*x+d)/(-e^2*x^2+d^2)^(5/2),x, algorithm="maxima")

[Out]

-1/5*d^5/((-e^2*x^2 + d^2)^(3/2)*e^8*x + (-e^2*x^2 + d^2)^(3/2)*d*e^7) - x^4/((-e^2*x^2 + d^2)^(3/2)*e^3) - 5*
d*x^3/((-e^2*x^2 + d^2)^(3/2)*e^4) + 20/3*d^2*x^2/((-e^2*x^2 + d^2)^(3/2)*e^5) + 64/15*d^3*x/((-e^2*x^2 + d^2)
^(3/2)*e^6) + 1/3*x^2/(sqrt(-e^2*x^2 + d^2)*e^5) - 14/3*d^4/((-e^2*x^2 + d^2)^(3/2)*e^7) - 52/15*d*x/(sqrt(-e^
2*x^2 + d^2)*e^6) - d*arcsin(e*x/d)/e^7 + 4/3*d^2/(sqrt(-e^2*x^2 + d^2)*e^7) + 1/3*sqrt(-e^2*x^2 + d^2)/e^7

Giac [F]

\[ \int \frac {x^6}{(d+e x) \left (d^2-e^2 x^2\right )^{5/2}} \, dx=\int { \frac {x^{6}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} {\left (e x + d\right )}} \,d x } \]

[In]

integrate(x^6/(e*x+d)/(-e^2*x^2+d^2)^(5/2),x, algorithm="giac")

[Out]

integrate(x^6/((-e^2*x^2 + d^2)^(5/2)*(e*x + d)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^6}{(d+e x) \left (d^2-e^2 x^2\right )^{5/2}} \, dx=\int \frac {x^6}{{\left (d^2-e^2\,x^2\right )}^{5/2}\,\left (d+e\,x\right )} \,d x \]

[In]

int(x^6/((d^2 - e^2*x^2)^(5/2)*(d + e*x)),x)

[Out]

int(x^6/((d^2 - e^2*x^2)^(5/2)*(d + e*x)), x)